Model-based Pedestrian Trajectory Prediction using Environmental Sensor for Mobile Robots Navigation

نویسندگان

  • Haruka Tonoki
  • Ayanori Yorozu
  • Masaki Takahashi
چکیده

Safety is the most important to the mobile robots that coexist with human. There are many studies that investigate obstacle detection and collision avoidance by predicting obstacles’ trajectories several seconds into the future using mounted sensors such as cameras and laser range finder (LRF) for the safe behavior control of robots. In environments such as crossing roads where blind areas occur because of visual barriers like walls, obstacle detection might be delayed and collisions might be difficult to avoid. Using environmental sensors to detect obstacles is effective in such environments. When crossing roads, there are several passages pedestrian might move and it is difficult to depict going each passage in the same movement model. Therefore, we hypothesize that a more effective way to predict pedestrian movement is by predicting passages pedestrian might move and estimating the trajectories to the passages. We acquire pedestrian trajectory data using an environmental LRF with an extended Kalman filter (EKF) and construct pedestrian movement models using vector auto regressive (VAR) models, which pedestrian state is consisting of the position, speed and direction. Then, we test the validity of the constructed pedestrian movement models using experimental data. We narrow down the selection of a pedestrian movement model by comparing the prediction error for each path between the estimated pedestrian state using an EKF, and the predicted state using each movement model. We predict the trajectory using the selected movement model. Finally, we confirm that an appropriate path model that a pedestrian can actually move through is selected before the crossing area and that only the appropriate model is selected near the crossing area. Keywords—Prediction of Human Movement; Service Robots; Vector Auto Regressive Models; Kalman Filter; Collision Avoidance

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV

This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...

متن کامل

Navigation Techniques of Mobile Robots In Greenhouses

With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...

متن کامل

Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...

متن کامل

Navigation Techniques of Mobile Robots In Greenhouses

With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...

متن کامل

3DOF Pedestrian Trajectory Prediction Learned from Long-Term Autonomous Mobile Robot Deployment Data

This paper presents a novel 3DOF pedestrian trajectory prediction approach for autonomous mobile service robots. While most previously reported methods are based on learning of 2D positions in monocular camera images, our approach uses range-finder sensors to learn and predict 3DOF pose trajectories (i.e. 2D position plus 1D rotation within the world coordinate system). Our approach, T-Pose-LST...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017